
Comparison of Colour Difference Methods for Natural Images 
Henri Kivinen, Mikko Nuutinen, Pirkko Oittinen; Aalto University School of Science and Technology, Department of Media 
Technology; Espoo, Finland 

Abstract 
Perceptual colour difference in simple colour patches has 

been extensively studied in the history of colour science. 
However, these methods are not assumed to be applicable for 
predicting the perceived  colour difference in complex colour 
patches such as digital images of complex scene. In this work 
existing metrics that predict the perceived colour difference in 
digital images of complex scene are  studied and compared. 
Performance evaluation was based on the correlations between 
values of the metrics and results of subjective tests that were 
done as a pair  comparison, in which fifteen test participants 
evaluated the subjective colour differences in digital images.  

The test image set consisted of eight images each having 
four versions of distortion generated by applying different ICC 
profiles. According to results, none of the metrics were able to 
predict the perceived colour difference in every test image. The 
results of iCAM metric had the highest average correlation for 
all images. However, the scatter of the judgements was very 
high for two of the images, and if these were excluded from the 
comparison the Hue-angle was the best performing metric. It 
was also noteworthy that the performance of  the CIELAB 
colour difference metric was relatively high. 

Introduction 
The conventional CIE metrics (e.g. CIEDE2000 /1/)) 

developed to estimate the colour differences of colour fields are 
capable to achieve a degree of prediction that is commonly 
acknowledged to be sufficient. These metrics require that the 
two stimuli being matched are presented using identical 
backgrounds and surroundings, and also that the two stimuli are 
viewed using identical illuminants and observers defined by the 
CIE. The results of the metrics are unreliable when these 
requirements are not met. Furthermore, these metrics are being 
used in quality control of colour reproduction, in which the 
recent cross media demands have made this conventional 
colorimetry insufficient. 

The CIECAM97 model and the updated CIECAM02 
model were developed to provide a viewing condition specific 
method for transforming tristimulus values into perceptual 
attribute correlates /2/. However, these models can only 
interpret simple colour patches due to their nonexistent 
capabilities to model the properties of spatial structure in 
complex images. These properties have received considerable 
attention in different fields of colour science, such as study of 
image similarity and retrieval, image segmentation, image 
quality and human colour vision. The definition of complex 
images rises from their structure, which consists of different 
spatial frequencies. For example, photographs of a natural 
scene can be defined as a complex image. 

One of the earliest models that were developed to predict 
the degree of perceptual colour difference in images of 
complex scenes is the S-CIELAB /3/. The extension to complex 
images was performed by using a contrast sensitivity function 
(CSF). Hong and Luo /4/ developed a (Hue-angle) metric for 

complex images that assigns higher weight to dominant colours 
and to colours having a greater difference. Chou and Liu /5/ 
proposed a (P-CIELAB) metric for complex images that 
incorporates a visibility threshold for colour differences. This 
pixel-wise visibility threshold varies as function of chroma, 
local luminance gradient, and background uniformity. Fairchild 
and Johnson /6/ have presented probably the most advanced 
model for colour appearance of complex images. Their iCAM 
framework includes different sub modules accounting for 
various properties of images and viewing conditions in image 
analysis. 

The aim of this study was to test and compare the metrics 
or models for complex images in order to determine their 
capability to predict the degree of visually perceived colour 
differences in natural photographs. To the best of our 
knowledge, the study of Hardeberg et al. /7/ is the only 
published work where different state-of-the-art colour 
difference metrics of complex images have been compared to 
each other. They analysed the relation of CIELAB dE, S-
CIELAB, iCAM, Structural Similarity Index /8/, Universal 
Image Quality /9/ and Hue-angle metric /4/ with data from a 
psychophysical experiment in which the perceptual image 
difference was evaluated. They used six test images, but only 
two of these images were natural photographs. The rest of the 
images were more or less studio photographs or graphical 
images. Their results indicated that perceptual image 
differences cannot be directly related to colour image 
differences as calculated using the current metrics. 

We evaluate the state-of-the-art metrics narrowing the 
problem from that defined by Hardeberg et al. /7/. A known 
fact is that image content exerts an influence on image 
assessment. For example, portrait and landscape are typical 
views in natural photography. We selected only landscape type 
images for our study, as they satisfied our needs for the 
requirement of colour distributions and spatial contents. We 
wanted that colour distribution of the images is wide enough 
because colour distortions were made using different ICC 
colour profiles. We also wanted that the spatial content of the 
images covers a wide range because we wanted to test how the 
methods take into account the spatial details of the image. In 
addition, our psychophysical experiment tested the perceptual 
colour difference, nor the perceptual image difference. 

Implementation of the metrics 
The metrics that were investigated and compared in this 

study are listed in Table 1. Selected metrics can be divided into 
different classes based on differences and similarities in their 
functional properties. The standardized metrics that are based 
on CIELAB dE colour difference were not originally developed 
to address differences in complex images, but they were 
selected to form a baseline for the comparisons. These metrics 
include the CIELAB dE, CIE94 and CIEDE2000 metric /10/. 
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Table 1. The metrics that were used in the study 

Metric Intended use Reference
dE Colour patches /10/ 
CIE94 Colour patches /10/ 
CIEDE2000 Colour patches /1/ 
Hue-angle Complex images /4/ 
P-CIELAB Complex images /5/ 
S-CIELAB Complex images /3/ 
iCAM Complex images /6/ 

 
In addition, the implemented metrics includes also 

CIELAB based metrics that were developed to predict the 
appearance of complex images. These are the Hue-angle, P-
CIELAB and S-CIELAB metrics. The first two are both similar 
in that they use a weighting scheme to address the structural 
properties of images, such that, a pixel-wise weight is applied 
to re-adjust a CIELAB dE value of the pixel to contribute to a 
more precise estimate of the perceived colour difference. But, 
as the Hue-angle metric computes the weight more globally, the 
P-CIELAB metric uses local properties of the image. The S-
CIELAB, which is also called a spatial extension to CIELAB 
colour space, takes advantage of the filtering characteristics of 
the human visual system (HVS) to apply the CIELAB dE 
metric to complex images. These characteristics are modelled 
with the contrast sensitivity function (CSF) in the frequency 
domain. 

Similarly, the iCAM framework uses the CSF, but instead 
of using the CIELAB colour space, it uses the IPT colour 
space. In addition, the iCAM framework consists of multiple 
modules that account for the viewing conditions and colour 
appearance phenomena. These include modelling of the 
chromatic adaptation, Hunt effect, Stevens effect, surround 
effect and lightness contrast effect. 

Test Images 
The distorted test images were created by changing their 

colours through ICC profiles gamut mapping process. Here, the 
absolute colorimetric rendering intent was used with four 
standard ICC profiles: Euroscale Uncoated, ISO Uncoated, 
PSR Gravure LWC, and Uncoated FOGRA. The gamut of 
these ICC profiles and the gamut of sRGB space in ab-plane 
are illustrated in Figure 1, where the visualizations have been 
obtained from ColorSync Utility included in Mac OS X. As can 
be seen from the figure, the ICC profiles can be divided into 
two groups based on their dimensions. This was done to ensure 
that there would be both larger and smaller differences between 
generated distortions. 

The selection of images for pilot tests from the candidate 
images was done by calculating average CIELAB dE values 
and then selecting those image sets that had average colour 
difference values on both sides of threshold value. The 
threshold value for colour difference discrimination in natural 
images is about 2.2 dEab

 /11/. Finally, the selection was further 
narrowed to eight images. Seven of the images were from the 
Photos.com –database /12/ and one was from the CIE TC8-03 
test image set /13/. The test images are presented in Figure 2, 
where the images are named as Autumn road, Red field, 
Mountains, Forest rise, Red brushwood, Park, Table, and 
Picnic. 

 

(a) (b) 

(c) (d) 
 

(e)  
Figure 1. Gamut visualizations of the ICC profiles. (a) Euroscale 

Uncoated, (b) Uncoated FOGRA, (c) ISO Uncoated, (d) PSR Gravure 

LWC and (e) sRGB. 

Autumn road /12/ Red field /12/ 

Mountains /12/ Forest rise /12/ 

Red brushwood /12/ Park /12/ 

Table /12/ Picnic /13/ 
Figure 2. Selected test images 
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Test environment 
Subjective tests were conducted in a test room with matt 

grey painted walls and sealed windows. The viewing conditions 
in test room were adjusted to correspond to the sRGB reference 
viewing environment, which is presented in Table 1. According 
to these parameters the ambient illuminance level of the 
viewing conditions was set to approximately 200 lux with 
colour temperature of 5000 K. The illumination was done by 
using filtered halogen lamps. The illuminance level and the 
colour temperature were measured at the beginning of each test 
day. 

Table 2. sRGB reference viewing environment 

Condition  sRGB 
Luminance level  80 cd/m2 
Illuminant White  x = 0.3127, y = 0.3291 (D65) 
Image surround  20% reflectance 
Encoding Ambient 
Illuminance Level  64 lux 
Encoding Ambient White 
Point  x = 0.3457, y = 0.3585 (D50) 
Encoding Viewing Flare  1.0% 
Typical Ambient Illuminance 
Level  200 lux 
Typical Ambient White Point  x = 0.3457, y = 0.3585 (D50) 
Typical Viewing Flare  5.0% 

 
Fifteen test participants took part in the test. The age of the 

test participants were between 23 to 29 years, and four of them 
were female and eleven were men. All test participants had 
normal colour vision and all had normal or corrected visual 
acuity. 

The tests were conducted on a simple image pair 
comparison application, which was programmed with Java. The 
application includes display for inputting test participant 
information, and two displays each presenting one image pair. 
The participant information is collected at the beginning of the 
test, and after clicking the start button, the two image pair 
windows are maximized to fill one display. Before starting the 
test, the test participant reads the instructions, including the test 
question: which of the two pairs has a bigger difference 
compared to other image pair. After these preparations, the test 
participant is asked to start the test by clicking the background 
of one of the image pair windows. This is expressed by clicking 
the pair that has the larger perceived colour difference (see 
Figure 3). 

 

Display One 

Display Two 
Figure 3. Example of the pair comparison application: image pairs, one on 

each display, are presented to test person, who has been instructed to 

select the pair that is perceived to have more colour difference. 

The image pairs were presented using Eizo ColorEdge 
CG241W displays. The displays were calibrated with Eizo 
ColorNavigator Calibration software. The calibration was done 
by using a sRGB colour space emulation, which makes it 
possible to achieve as close to sRGB colour space full gamut as 
possible. The measurements for the calibration were done using 
X-Rite EyeOne Pro spectrophotometer. The colour 
reproduction performance was worst in bluish hue areas in both 
displays, while the average value of CIEDE2000 colour 
difference was between 0.4 and 0.6. The displays were also 
compared with each other to test their similarity, and even 
though the displays were the same model there were clear 
differences between them (Table 3). 

Table 3. Comparison of the two displays (CIEDE2000) 

Average 0.81 
Std. Deviation 0.72 
Best 90% 0.61 
Worst 10% 2.50 

Subjective data 
The subjective tests, as mentioned, were accomplished 

with psychophysical pair comparison tests. Although, the tests 
consist of comparison of two image pairs, the factor that is 
considered was the difference between two images forming a 
pair. Therefore, the law of comparative judgement by 
Torgerson /14/ was used in the analysis of the pair comparison 
data. The results of the subjective tests are presented in Table 4 
and Table 5. Each value in the tables represents the subjective 
difference scale value that was calculated from the comparison 
judgements. One test participant from total of sixteen 
participants, whose judgements differed clearly from other 
judgements, was excluded from the data. 
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Table 4. Subjective difference scales for image contents 
Autumn road, Red fields, Mountains, and Forrest rise, and 
ICC profiles: (1) Euroscale Uncoated, (2)  ISO Uncoated, (3) 
Uncoated FOGRA and (4) PSR Gravure LWC 

ICC profiles \ 
images 

Autumn 
road 

Red 
Fields 

Mountains Forrest 
rise 

(1,2)   - (1,3) * 0.201 0.280 0.183 0.580 
(1,2)   - (1,4)  0.178 0.461 0.318 0.258 
(1,2)   - (2,3)  0.175 1.223 0.283 0.372 
(1,2)   - (2,4)  0.059 0.363 0.506 0.087 
(1,2)   - (3,4)  0.065 0.624 0.383 0.174 
(1,3)   - (1,4)  0.380 0.181 0.500 0.322 
(1,3)   - (2,3)  0.377 0.943 0.465 0.208 
(1,3)   - (2,4)  0.260 0.083 0.688 0.667 
(1,3)   - (3,4)  0.267 0.344 0.566 0.406 
(1,4)   - (2,3)  0.003 0.762 0.035 0.113 
(1,4)   - (2,4)  0.119 0.098 0.188 0.346 
(1,4)   - (3,4)  0.113 0.163 0.066 0.084 
(2,3)   - (2,4)  0.117 0.860 0.223 0.459 
(2,3)   - (3,4)  0.110 0.599 0.100 0.198 
(2,4)   - (3,4)  0.007 0.261 0.123 0.261 
     Average 0.162 0.483 0.308 0.302 
* Image pair (ICC1,ICC2) compared to Image pair (ICC1, 
ICC3) 

Table 5. Subjective difference scales for image contents Red 
brushwood, Park, Table, and Picnic, and ICC profiles: (1) 
Euroscale Uncoated, (2)  ISO Uncoated, (3) Uncoated 
FOGRA and (4) PSR Gravure LWC 

ICC profiles \ 
images 

Red 
brushwood

Park Table Picnic 

(1,2)   - (1,3) * 0.270 0.025 0.680 0.256 
(1,2)   - (1,4)  0.954 0.444 1.231 0.114 
(1,2)   - (2,3)  1.095 0.860 1.567 0.062 
(1,2)   - (2,4)  0.085 0.932 1.478 0.089 
(1,2)   - (3,4)  0.176 1.027 1.527 0.256 
(1,3)   - (1,4)  0.684 0.420 0.551 0.142 
(1,3)   - (2,3)  0.825 0.836 0.887 0.194 
(1,3)   - (2,4)  0.355 0.908 0.799 0.345 
(1,3)   - (3,4)  0.094 1.002 0.847 0.000 
(1,4)   - (2,3)  0.141 0.416 0.336 0.052 
(1,4)   - (2,4)  1.039 0.488 0.247 0.202 
(1,4)   - (3,4)  0.778 0.583 0.296 0.142 
(2,3)   - (2,4)  1.180 0.072 0.088 0.150 
(2,3)   - (3,4)  0.919 0.167 0.040 0.194 
(2,4)   - (3,4)  0.261 0.095 0.049 0.344 
     Average 0.590 0.552 0.708 0.169 
* Image pair (ICC1,ICC2) compared to Image pair (ICC1, 
ICC3) 
 
The average subjective difference varies significantly between 
images. As a high subjective difference means that relatively 
many test participants chose that pair as one which has higher 
perceived difference, meaning that differences were more 
clearly perceived but also that the images have higher colour 
differences. The lowest average subjective scale value was for 
images “Autumn road” and “Picnic”. The highest average 

subjective scale value was for image “Table”. The relationship 
between low subjective scale values and high deviation in 
judgement of the test participants is evident. 

Performance of the metrics 
The performance of the computational metrics was 

evaluated in relation to the differences of the resulting colour 
difference values between two images. Thus, a metric was 
capable of predicting perceptual colour difference in complex 
images if the difference between two calculated colour 
difference values correlated with the subjective difference 
(Table 6 and Table 7).  

As can be seen from the correlation values in Table 6 and 
Table 7, none of the metrics outperform the others in the case 
of every image content. The Hue-angle metric had the best 
correlation for three of the images with significantly high 
performance, while the P-CIELAB metric had also the highest 
correlations in three of the image contents, two of them were 
with low statistical significance. The iCAM metric was the best 
performing metric only for two of the images, but the average 
correlation was the highest of the metrics indicating that the 
iCAM metric was the best performing metric. The second 
highest average correlation was for the Hue-angle metric. 

 

Table 6. Pearson linear correlation coefficients between the 
subjective colour differenece and predictions of CIELAB, 
CIE94, and CIEDE2000 

 CIELAB CIE94 CIEDE2000 
Autumn road 0.113 -0.279 -0.142 
Red field 0.687 -0.070 0.163 
Mountains 0.797 0.210 0.647 
Forest rise -0.036 -0.061 0.109 
Red brushwood 0.361 -0.042  0.077 
Park 0.813 -0.045  0.324 
Table 0.905 0.688  0.908 
Picnic 0.011 -0.249  -0.209 
Average 0.457 0.019 0.235 

Table 7. Pearson linear correlation coefficients between the 
subjective colour differenece and predictions of Hue-Angle, 
P-CIELAB, S-CIELAB, and iCAM 

 Hue-
angle 

P-
CIELAB 

S-
CIELAB 

iCAM 

Autumn road -0.047 0.857 0.273 0.827 
Red field 0.742 0.115 0.488 0.798 
Mountains 0.878 0.331 0.868 0.563 
Forest rise -0.046 0.323 0.195 0.070  
Red 
brushwood 

0.471 -0.301 0.110 0.659  

Park 0.832 -0.090 0.637 0.542  
Table 0.937 0.839 0.670 0.544  
Picnic 0.016 0.132 0.023 0.110  
Average 0.473 0.276 0.408 0.514  

 
As it was discussed earlier, the correlation of the metric 

varied according to different judgements. If we exclude the two 
image contents (Autumn Road, Picnic) that have high variation 
in the judgements, the average correlations are rather different. 
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Now, the iCAM metric has the average correlation of 0.529, 
meaning that the metric was only the third best performing 
metric, while even the CIELAB metric could outperform it with 
average correlation of 0.588. While the best metric in terms of 
average correlation is now the Hue-angle metric with average 
correlation of 0.636. 

The selection between using all eight images and six 
images is not straightforward. It might seem proper to use all of 
the images in metric performance evaluation; on the other hand, 
if test participants could not agree which image pair had greater 
difference in excluded images, then it might be proper to 
assume that the metrics would not need to predict the degree of 
perceptual colour difference that does not exists. 

On the other hand, the metrics should be capable of 
recognizing image content and related colour difference that is 
not perceivable by every observer or is such a colour difference 
that has subjective magnitude; for example, distorted image 
having colour difference in blue regions compared to an image 
having equal difference in red regions. Hence, it would be 
needed to study if there are such factors in the image content 
that may interfere observer’s conclusion of the colour 
difference. 

Nevertheless, relatively high performance of the CIELAB 
metric with both sets of six and eight images is remarkable. 
One reason for the success of the CIELAB metric might be in 
the global formation of the colour difference. In such cases, the 
effect of structural properties of the image content is minor. For 
example, test images “Park” and “Table” have uniformly 
located colour differences that were well predicted by the 
metric, while the effect of image structure in test images 
“Autumn road” and “Red brushwood” may have a greater 
effect on the perceived of colour difference which was not 
predicted by the CIELAB. 

The correlations between metrics evaluated from all 
values, are shown in Table 8. As can be seen, the Hue-angle 
and CIELAB metrics are significantly correlated with each 
other. This is rather remarkable when considering how complex 
the process of the Hue-angle metric is, although it is built on 
CIELAB. This indicates that the effect of image content is 
rather small in the Hue-angle model. The values of CIE94 were 
closest to CIEDE2000, while it did not have any correlation 
with iCAM metric, and only minor correlation with other 
metrics. The CIEDE2000 metric had only minor correlation 
with other metrics except CIELAB and CIE94.  

Table 8. Correlations between metrics. (1) CIELAB, (2) 
CIE94, (3) CIEDE2000, (4) P-CIELAB, (5) Hue-Angle, (6) 
iCAM. 

 2 3 4 5 6  7 
1  0,387 0,706 0,004 0,914 0,648 0,786 
2  - 0,843 0,330 0,262 0,045 0,272 
3 - - 0,301 0,527 0,296 0,536 
4 - - - -0,070 -0,103 0,005 
5 - - - - 0,603 0,718 
6  - - - - - 0,665 

 

Conclusions 
Overall, the state of the art metrics that were tested in this 

study are not completely capable to predict the degree of 
perceived colour difference in images of complex scenes. Two 
metrics came up in the comparison: iCAM and Hue-angle. If all 
the images are considered, the iCAM is the best performing 
metric. While the Hue-angle metric is the best performing 
methods if we excluded those image contents that could not be 
judged without a high variation in judgements. In this case the 
iCAM-metric is only the third best method after CIELAB-
metric.  

Additionally, the iCAM-metric has its strengths in image 
appearance modelling, while the Hue-angle metric has its 
advantages in modelling the effect of image structure. The 
future metric should be a hybrid model that has both image 
appearance and image structure modelling capabilities. One 
example of a hybrid model could be a metric that uses 
segmentation of colour difference map to find spatial areas that 
have higher impact on perceived colour difference. 
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